Search results
Results From The WOW.Com Content Network
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
Uniform binary search is an optimization of the classic binary search algorithm invented by Donald Knuth and given in Knuth's The Art of Computer Programming.It uses a lookup table to update a single array index, rather than taking the midpoint of an upper and a lower bound on each iteration; therefore, it is optimized for architectures (such as Knuth's MIX) on which
The Day–Stout–Warren (DSW) algorithm is a method for efficiently balancing binary search trees – that is, decreasing their height to O(log n) nodes, where n is the total number of nodes. Unlike a self-balancing binary search tree , it does not do this incrementally during each operation, but periodically, so that its cost can be amortized ...
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
The fastest portable approaches to simulate clz are a combination of binary search and table lookup: an 8-bit table lookup (2 8 =256 1-byte entries) can replace the bottom 3 branches in binary search. 64-bit operands require an additional branch. A larger width lookup can be used but the maximum practical table size is limited by the size of L1 ...
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Searching is similar to searching a binary search tree. Starting at the root, the tree is recursively traversed from top to bottom. At each level, the search reduces its field of view to the child pointer (subtree) whose range includes the search value. A subtree's range is defined by the values, or keys, contained in its parent node.
Adding one item to a binary search tree is on average an O(log n) process (in big O notation). Adding n items is an O(n log n) process, making tree sorting a 'fast sort' process. Adding an item to an unbalanced binary tree requires O(n) time in the worst-case: When the tree resembles a linked list (degenerate tree).