When.com Web Search

  1. Ads

    related to: math radius formula examples with answers

Search results

  1. Results From The WOW.Com Content Network
  2. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  3. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  4. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    If the answer for a given is denoted by () then the following list shows the first few values of () for an integer between 0 and 12 followed by the list of values rounded to the nearest integer: 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441 (sequence A000328 in the OEIS )

  5. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have.In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation.

  6. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    The radius of each of the three Malfatti circles may be determined as a formula involving the three side lengths a, b, and c of the triangle, the inradius r, the semiperimeter = (+ +) /, and the three distances d, e, and f from the incenter of the triangle to the vertices opposite sides a, b, and c respectively.

  7. Cauchy–Hadamard theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Hadamard_theorem

    In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, [1] but remained relatively unknown until Hadamard rediscovered it. [2]

  8. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A circle circumference and radius are proportional. The area enclosed and the square of its radius are proportional. The constants of proportionality are 2 π and π respectively. The circle that is centred at the origin with radius 1 is called the unit circle. Thought of as a great circle of the unit sphere, it becomes the Riemannian circle.

  9. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...