When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

  3. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there.

  4. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    two iterations of the Givens rotation (note that the Givens rotation algorithm used here differs slightly from above) yield an upper triangular matrix in order to compute the QR decomposition. In order to form the desired matrix, zeroing elements (2, 1) and (3, 2) is required; element (2, 1) is zeroed first, using a rotation matrix of:

  5. RRQR factorization - Wikipedia

    en.wikipedia.org/wiki/RRQR_factorization

    An RRQR factorization or rank-revealing QR factorization is a matrix decomposition algorithm based on the QR factorization which can be used to determine the rank of a matrix. [1] The singular value decomposition can be used to generate an RRQR, but it is not an efficient method to do so. [2] An RRQR implementation is available in MATLAB. [3]

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Also known as: UTV decomposition, ULV decomposition, URV decomposition. Applicable to: m-by-n matrix A. Decomposition: =, where T is a triangular matrix, and U and V are unitary matrices. Comment: Similar to the singular value decomposition and to the Schur decomposition.

  7. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    An LU factorization with full pivoting involves both row and column permutations to find absolute maximum element in the whole submatrix: P A Q = L U , {\displaystyle PAQ=LU,} where L , U and P are defined as before, and Q is a permutation matrix that reorders the columns of A .

  8. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    In the theory of Lie group decompositions, it is generalized by the Iwasawa decomposition. The application of the Gram–Schmidt process to the column vectors of a full column rank matrix yields the QR decomposition (it is decomposed into an orthogonal and a triangular matrix).

  9. QR - Wikipedia

    en.wikipedia.org/wiki/QR

    QR decomposition, a decomposition of a matrix QR algorithm, an eigenvalue algorithm to perform QR decomposition; Quadratic reciprocity, a theorem from modular arithmetic; Quasireversibility, a property of some queues; Reaction quotient (Q r), a function of the activities or concentrations of the chemical species involved in a chemical reaction