Search results
Results From The WOW.Com Content Network
Lighting and reflection calculations, as in the video game OpenArena, use the fast inverse square root code to compute angles of incidence and reflection.. Fast inverse square root, sometimes referred to as Fast InvSqrt() or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal (or multiplicative inverse) of the square root of a 32-bit floating-point number in ...
Godot (/ ˈ ɡ ɒ d oʊ / GOD-oh) [a] is a cross-platform, free and open-source game engine released under the permissive MIT license.It was initially developed in Buenos Aires by Argentine software developers Juan Linietsky and Ariel Manzur [6] for several companies in Latin America prior to its public release in 2014. [7]
"Instead of using a single floating-point number as approximation for the value of a real variable in the mathematical model under investigation, interval arithmetic acknowledges limited precision by associating with the variable a set of reals as possible values. For ease of storage and computation, these sets are restricted to intervals." [7]
The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
Computers typically use binary arithmetic, but to make the example easier to read, it will be given in decimal. Suppose we are using six-digit decimal floating-point arithmetic, sum has attained the value 10000.0, and the next two values of input[i] are 3.14159 and 2.71828. The exact result is 10005.85987, which rounds to 10005.9.
It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ...
Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits. Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required.