When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acousto-optic modulator - Wikipedia

    en.wikipedia.org/wiki/Acousto-optic_modulator

    Λ is the wavelength of the sound wave, λ is that of the light wave, and n is the refractive index of the crystal in the AOD (which should be omitted. This is a mistake). The +1 order has a positive frequency shift compared to the incident light; The 0th order has the same frequency as the incident light.

  3. Reflection phase change - Wikipedia

    en.wikipedia.org/wiki/Reflection_phase_change

    Light waves change phase by 180° when they reflect from the surface of a medium with higher refractive index than that of the medium in which they are travelling. [1] A light wave travelling in air that is reflected by a glass barrier will undergo a 180° phase change, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air.

  4. Opto-isolator - Wikipedia

    en.wikipedia.org/wiki/Opto-isolator

    Schematic diagram of an opto-isolator showing source of light (LED) on the left, dielectric barrier in the center, and sensor (phototransistor) on the right [note 1]. An opto-isolator (also called an optocoupler, photocoupler, or optical isolator) is an electronic component that transfers electrical signals between two isolated circuits by using light. [1]

  5. Optical isolator - Wikipedia

    en.wikipedia.org/wiki/Optical_isolator

    The analyzer then enables the light to be transmitted through the isolator. Light traveling in the backward direction becomes polarized at 45° by the analyzer. The Faraday rotator will again rotate the polarization by 45°. This means the light is polarized horizontally (the direction of rotation is not sensitive to the direction of propagation).

  6. Electromagnetic shielding - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_shielding

    In the case of high-frequency electromagnetic radiation, the above-mentioned adjustments take a non-negligible amount of time, yet any such radiation energy, as far as it is not reflected, is absorbed by the skin (unless it is extremely thin), so in this case there is no electromagnetic field inside either.

  7. Anti-reflective coating - Wikipedia

    en.wikipedia.org/wiki/Anti-reflective_coating

    For the simplified scenario of visible light travelling from air (n 0 ≈ 1.0) into common glass (n S ≈ 1.5), the value of R is 0.04, or 4%, on a single reflection. So at most 96% of the light (T = 1 − R = 0.96) actually enters the glass, and the rest is reflected from the surface. The amount of light reflected is known as the reflection loss.

  8. Reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Reflection_coefficient

    In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.

  9. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).