Search results
Results From The WOW.Com Content Network
The set M(n, R) (also denoted M n (R) [7]) of all square n-by-n matrices over R is a ring called matrix ring, isomorphic to the endomorphism ring of the left R-module R n. [58] If the ring R is commutative, that is, its multiplication is commutative, then the ring M(n, R) is also an associative algebra over R.
The choice of a typical library depends on a range of requirements such as: desired features (e.g. large dimensional linear algebra, parallel computation, partial differential equations), licensing, readability of API, portability or platform/compiler dependence (e.g. Linux, Windows, Visual C++, GCC), performance, ease-of-use, continued support ...
where R 1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q 1 is m×n, Q 2 is m×(m − n), and Q 1 and Q 2 both have orthogonal columns. Golub & Van Loan (1996 , §5.2) call Q 1 R 1 the thin QR factorization of A ; Trefethen and Bau call this the reduced QR factorization . [ 1 ]
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } .
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...