Search results
Results From The WOW.Com Content Network
Uranium-234 (234 U or U-234) is an isotope of uranium. In natural uranium and in uranium ore, 234 U occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% (55 parts per million, or 1/18,000) of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of 238 U. Thus the ratio of ...
All three isotopes are radioactive (i.e., they are radioisotopes), and the most abundant and stable is uranium-238, with a half-life of 4.4683 × 10 9 years (about the age of the Earth). Uranium-238 is an alpha emitter, decaying through the 18-member uranium series into lead-206.
Uranium-238 is the most stable isotope of uranium, with a half-life of about 4.463 × 10 9 years, [7] roughly the age of the Earth. Uranium-238 is predominantly an alpha emitter, decaying to thorium-234. It ultimately decays through the uranium series, which has 18 members, into lead-206. [17]
Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element with stable isotopes, except for helium, beryllium, and carbon, has at least three.
In stable isotopes, light elements typically have a lower ratio of neutrons to protons in their nucleus than heavier elements. Light elements such as helium-4 have close to a 1:1 neutron:proton ratio. The heaviest elements such as uranium have close to 1.5 neutrons per proton (e.g. 1.587 in uranium-238).
234 Th, 234m Pa,..., 206 Pb are the decay products of 238 U. 234 Th is the daughter of the parent 238 U. 234m Pa (234 metastable) is the granddaughter of 238 U. These might also be referred to as the daughter products of 238 U. [1] Decay products are important in understanding radioactive decay and the management of radioactive waste.
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).
The uranium-238 series is a series of α (N and Z less 2) and β− decays (N less 1, Z plus 1) to nuclides that are successively deeper into the valley of stability. The series terminates at lead-206, a stable nuclide at the bottom of the valley of stability. Radioactive decay often proceeds via a sequence of steps known as a decay chain.