Ad
related to: transformer winding resistance
Search results
Results From The WOW.Com Content Network
In contrast to the parallel shunt component, the series component in the circuit diagram represents the winding losses due to the resistance of the coil windings of the transformer. Current, voltage and power are measured at the primary winding to ascertain the admittance and power-factor angle.
A different form of short-circuit testing is done to assess the mechanical strength of the transformer windings, and their ability to withstand the high forces produced if an energized transformer experiences a short-circuit fault. Currents during such events can be several times the normal rated current.
Transformer losses arise from: Winding joule losses Current flowing through a winding's conductor causes joule heating due to the resistance of the wire. As frequency increases, skin effect and proximity effect causes the winding's resistance and, hence, losses to increase. Core losses Hysteresis losses
A planar transformer Exploded view: the spiral primary "winding" on one side of the PCB (the spiral secondary "winding" is on the other side of the PCB) Manufacturers either use flat copper sheets or etch spiral patterns on a printed circuit board to form the "windings" of a planar transformer, replacing the turns of wire used to make other ...
In electrical engineering, coil winding is the manufacture of electromagnetic coils. Coils are used as components of circuits, and to provide the magnetic field of motors, transformers, and generators, and in the manufacture of loudspeakers and microphones. The shape and dimensions of a winding are designed to fulfill the particular purpose.
A current transformer has a primary winding, a core, and a secondary winding, although some transformers use an air core. While the physical principles are the same, the details of a "current" transformer compared with a "voltage" transformer will differ owing to different requirements of the application.
Copper loss is the term often given to heat produced by electrical currents in the conductors of transformer windings, or other electrical devices. Copper losses are an undesirable transfer of energy, as are core losses, which result from induced currents in adjacent components.
For example, a transformer with a vector group of Dy1 has a delta-connected HV winding and a wye-connected LV winding. The phase angle of the LV winding lags the HV by 30 degrees. Note that the high-voltage (HV) side always comes before the low-voltage (LV) side, regardless of which is the primary winding.