Search results
Results From The WOW.Com Content Network
Number blocks, which can be used for counting. Counting is the process of determining the number of elements of a finite set of objects; that is, determining the size of a set. . The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every element of the set, in some order, while marking (or displacing) those elements to avoid visiting the ...
36 represented in chisanbop, where four fingers and a thumb are touching the table and the rest of the digits are raised. The three fingers on the left hand represent 10+10+10 = 30; the thumb and one finger on the right hand represent 5+1=6. Counting from 1 to 20 in Chisanbop. Each finger has a value of one, while the thumb has a value of five.
The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...
Meissel already found that for k ≥ 3, P k (x, a) = 0 if a = π(x 1/3).He used the resulting equation for calculations of π(x) for big values of x. [1]Meissel calculated π(x) for values of x up to 10 9, but he narrowly missed the correct result for the biggest value of x.
In many cases where the principle could give an exact formula (in particular, counting prime numbers using the sieve of Eratosthenes), the formula arising does not offer useful content because the number of terms in it is excessive. If each term individually can be estimated accurately, the accumulation of errors may imply that the inclusion ...
In combinatorics, stars and bars (also called "sticks and stones", [1] "balls and bars", [2] and "dots and dividers" [3]) is a graphical aid for deriving certain combinatorial theorems. It can be used to solve many simple counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins. [4]
The 100 prisoners problem has different renditions in the literature. The following version is by Philippe Flajolet and Robert Sedgewick: [1] The director of a prison offers 100 death row prisoners, who are numbered from 1 to 100, a last chance. A room contains a cupboard with 100 drawers.
Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]