Search results
Results From The WOW.Com Content Network
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]
3.1 Systems of Linear Equations in Three Variables; 3.2 Simultaneous Equations involving One Linear Equation and One Non-Linear Equations; 4) Indices, Surds and Logarithms 4.1 Law of Indices; 4.2 Laws of Surds; 4.3 Laws of Logarithms; 4.4 Applications of Indices, Surds and Logarithms; 5) Progressions 5.1 Arithmetic Progressions; 5.2 Geometric ...
Alternatively—since the previous result can be unaesthetic, especially for inlined formulae presented as an image whose baseline does not line up with that of the running text—the punctuation can be placed after the </math> tag and then the whole formula (including the punctuation) can be enclosed with the {} template, as in This shows that ...
According to Earl Babbie, items in indices are usually weighted equally, unless there are some reasons against it (for example, if two items reflect essentially the same aspect of a variable, they could have a weight of 0.5 each). [4] According to the same author, [5] constructing the items involves four steps.
Terms inside the bracket are evaluated first; hence 2×(3 + 4) is 14, 20 ÷ (5(1 + 1)) is 2 and (2×3) + 4 is 10. This notation is extended to cover more general algebra involving variables: for example (x + y) × (x − y). Square brackets are also often used in place of a second set of parentheses when they are nested—so as to provide a ...
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.