When.com Web Search

  1. Ad

    related to: one step linear inequalities calculator with two variables

Search results

  1. Results From The WOW.Com Content Network
  2. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Fourier–Motzkin elimination, also known as the FME method, is a mathematical algorithm for eliminating variables from a system of linear inequalities. It can output real solutions. The algorithm is named after Joseph Fourier [ 1 ] who proposed the method in 1826 and Theodore Motzkin who re-discovered it in 1936.

  3. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  4. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    However, to apply it, the origin (all variables equal to 0) must be a feasible point. This condition is satisfied only when all the constraints (except non-negativity) are less-than constraints and with positive constant on the right-hand side. The Big M method introduces surplus and artificial variables to convert all inequalities into that form.

  5. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    In inequalities where ≥ appears such as the second one, some authors refer to the variable introduced as a surplus variable. Third, each unrestricted variable is eliminated from the linear program. This can be done in two ways, one is by solving for the variable in one of the equations in which it appears and then eliminating the variable by ...

  6. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    where x i is a basic variable and the x j 's are the nonbasic variables (i.e. the basic solution which is an optimal solution to the relaxed linear program is = ¯ and =). We write coefficients b ¯ i {\displaystyle {\bar {b}}_{i}} and a ¯ i , j {\displaystyle {\bar {a}}_{i,j}} with a bar to denote the last tableau produced by the simplex method.

  7. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.

  8. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.

  9. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Once y is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the solution is z = −1, y = 3, and x = 2. So ...