Search results
Results From The WOW.Com Content Network
A truncated hexagon, t{6}, is a dodecagon, {12}, alternating two types (colors) of edges. An alternated hexagon, h{6}, is an equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into six equilateral triangles by adding a center point.
A hexagram or sexagram is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}. The term is used to refer to a compound figure of two equilateral triangles. The intersection is a regular hexagon. The hexagram is part of an infinite series of shapes which are compounds of two n-dimensional simplices.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Hemihelix, a quasi-helical shape characterized by multiple tendril perversions; ... Polygons named for their number of sides Monogon — 1 sided; Digon — 2 sided ...
6 is the 2nd superior highly composite number, [5] the 2nd colossally abundant number, [6] the 3rd triangular number, [7] the 4th highly composite number, [8] a pronic number, [9] a congruent number, [10] a harmonic divisor number, [11] and a semiprime. [12] 6 is also the first Granville number, or -perfect number.
The quantity h (called the Coxeter number) is 4, 6, 6, 10, and 10 for the tetrahedron, cube, octahedron, dodecahedron, and icosahedron respectively. The angular deficiency at the vertex of a polyhedron is the difference between the sum of the face-angles at that vertex and 2 π. The defect, δ, at any vertex of the Platonic solids {p,q} is
[K] Kaleido, 1993: The 80 figures were grouped by symmetry: 1–5 as representatives of the infinite families of prismatic forms with dihedral symmetry, 6–9 with tetrahedral symmetry, 10–26 with octahedral symmetry, 27–80 with icosahedral symmetry.
Every hexagonal number is a triangular number, but only every other triangular number (the 1st, 3rd, 5th, 7th, etc.) is a hexagonal number. Like a triangular number, the digital root in base 10 of a hexagonal number can only be 1, 3, 6, or 9. The digital root pattern, repeating every nine terms, is "1 6 6 1 9 3 1 3 9".