When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    It can be used in calculating the sample size for a future study. When measuring differences between proportions, Cohen's h can be used in conjunction with hypothesis testing . A " statistically significant " difference between two proportions is understood to mean that, given the data, it is likely that there is a difference in the population ...

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /

  4. PS Power and Sample Size - Wikipedia

    en.wikipedia.org/wiki/PS_Power_and_Sample_Size

    A description of each calculation, written in English, is generated and may be copied into the user's documents. Interactive help is available. The program provides methods that are appropriate for matched and independent t-tests, [ 2 ] survival analysis, [ 5 ] matched [ 6 ] and unmatched [ 7 ] [ 8 ] studies of dichotomous events, the Mantel ...

  5. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Formulas, tables, and power function charts are well known approaches to determine sample size. Steps for using sample size tables: Postulate the effect size of interest, α, and β. Check sample size table [20] Select the table corresponding to the selected α; Locate the row corresponding to the desired power; Locate the column corresponding ...

  6. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.

  7. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random sample.

  8. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    where N is the population size, n is the sample size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. These versions differ only in the factor in the denominator (N - 1). For a large N the difference is negligible.

  9. Tolerance interval - Wikipedia

    en.wikipedia.org/wiki/Tolerance_interval

    A tolerance interval (TI) is a statistical interval within which, with some confidence level, a specified sampled proportion of a population falls. "More specifically, a 100×p%/100×(1−α) tolerance interval provides limits within which at least a certain proportion (p) of the population falls with a given level of confidence (1−α)."