Search results
Results From The WOW.Com Content Network
These cells, unlike most other cells within the heart, can spontaneously produce action potentials. [5] These action potentials travel along the cell membrane (sarcolemma) , as impulses, passing from one cell to the next through channels, in structures known as gap junctions .
The Purkinje fibers are further specialized to rapidly conduct impulses (having numerous fast voltage-gated sodium channels and mitochondria, and fewer myofibrils, than the surrounding muscle tissue). Purkinje fibers take up stain differently from the surrounding muscle cells because of having relatively fewer myofibrils than other cardiac cells.
The cardiac conduction system (CCS, also called the electrical conduction system of the heart) [1] transmits the signals generated by the sinoatrial node – the heart's pacemaker, to cause the heart muscle to contract, and pump blood through the body's circulatory system.
The cardiomyocytes make up the bulk (99%) of cells in the atria and ventricles. These contractile cells respond to impulses of action potential from the pacemaker cells and are responsible for the contractions that pump blood through the body. The pacemaker cells make up just (1% of cells) and form the conduction system of the heart.
These cells produce an electrical impulse known as a cardiac action potential that travels through the electrical conduction system of the heart, causing it to contract. In a healthy heart, the SA node continuously produces action potentials, setting the rhythm of the heart (sinus rhythm), and so is known as the heart's natural pacemaker.
It employs pacemaker cells that produce electrical impulses, known as cardiac action potentials, which control the rate of contraction of the cardiac muscle, that is, the heart rate. In most humans, these cells are concentrated in the sinoatrial (SA) node, the primary pacemaker, which regulates the heart’s sinus rhythm.
Nerve cells carry an electrical signal from the site of tissue damage up to the brain, which perceives the signal as pain. ... “And nerve impulses are produced by tiny molecular batteries within ...
The atrioventricular node delays impulses by approximately 0.09s. This delay in the cardiac pulse is extremely important: It ensures that the atria have ejected their blood into the ventricles first before the ventricles contract. [9] This also protects the ventricles from excessively fast rate response to atrial arrhythmias (see below). [10]