Ads
related to: weakly polynomial time problems examples worksheet pdf download printablegenerationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; ... Pseudo-polynomial time algorithms (4 P) Pages in category "Weakly NP-complete problems"
An example is the partition problem. Both weak NP-hardness and weak polynomial-time correspond to encoding the input agents in binary coding. If a problem is strongly NP-hard, then it does not even have a pseudo-polynomial time algorithm. It also does not have a fully-polynomial time approximation scheme. An example is the 3-partition problem.
An example is the partition problem. Both weak NP-hardness and weak polynomial-time correspond to encoding the input agents in binary coding. If a problem is strongly NP-hard, then it does not even have a pseudo-polynomial time algorithm. It also does not have a fully-polynomial time approximation scheme. An example is the 3-partition problem.
A problem is said to be NP-hard if everything in NP can be transformed in polynomial time into it even though it may not be in NP. A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do.
A well-known example of a problem for which a weakly polynomial-time algorithm is known, but is not known to admit a strongly polynomial-time algorithm, is linear programming. Weakly polynomial time should not be confused with pseudo-polynomial time, which depends on the magnitudes of values in the problem instead of the lengths and is not ...
If a problem is weakly NP-hard, then it does not have a weakly polynomial time algorithm (polynomial in the number of integers and the number of bits in the largest integer), but it may have a pseudopolynomial time algorithm (polynomial in the number of integers and the magnitude of the largest integer). An example is the partition problem.