When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flux (machine-learning framework) - Wikipedia

    en.wikipedia.org/wiki/Flux_(machine-learning...

    Flux is an open-source machine-learning software library and ecosystem written in Julia. [1] [6] Its current stable release is v0.15.0 [4] .It has a layer-stacking-based interface for simpler models, and has a strong support on interoperability with other Julia packages instead of a monolithic design. [7]

  3. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  4. ML.NET - Wikipedia

    en.wikipedia.org/wiki/ML.NET

    ML.NET is a free software machine learning library for the C# and F# programming languages. [4] [5] [6] It also supports Python models when used together with NimbusML.The preview release of ML.NET included transforms for feature engineering like n-gram creation, and learners to handle binary classification, multi-class classification, and regression tasks. [7]

  5. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [ 1 ] [ 2 ] [ 3 ] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.

  6. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    Google JAX is a machine learning framework for transforming numerical functions. [71] [72] [73] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and TensorFlow's XLA (Accelerated Linear Algebra).

  7. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In computational learning theory, probably approximately correct (PAC) learning is a framework for mathematical analysis of machine learning. It was proposed in 1984 by Leslie Valiant. [1] In this framework, the learner receives samples and must select a generalization function (called the hypothesis) from a

  8. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .

  9. Active learning (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Active_learning_(machine...

    Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...