Search results
Results From The WOW.Com Content Network
In queueing theory, a discipline within the mathematical theory of probability, Ross's conjecture gives a lower bound for the average waiting-time experienced by a customer when arrivals to the queue do not follow the simplest model for random arrivals. It was proposed by Sheldon M. Ross in 1978 and proved in 1981 by Tomasz Rolski. [1]
Sheldon M. Ross is the Daniel J. Epstein Chair and Professor at the USC Viterbi School of Engineering. He is the author of several books in the field of probability. He is the author of several books in the field of probability.
A graph that shows the number of balls in and out of the vase for the first ten iterations of the problem. The Ross–Littlewood paradox (also known as the balls and vase problem or the ping pong ball problem) is a hypothetical problem in abstract mathematics and logic designed to illustrate the paradoxical, or at least non-intuitive, nature of infinity.
where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the probability of the chain moving from state i to state j in t steps. As a corollary, it follows that to calculate the transition matrix of jump t , it is sufficient to raise the transition matrix of jump one to the power of t , that is
Given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
The geometric distribution gives the probability that the first occurrence of success requires independent trials, each with success probability . If the probability of success on each trial is p {\displaystyle p} , then the probability that the k {\displaystyle k} -th trial is the first success is
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .