Search results
Results From The WOW.Com Content Network
Joseph Bertrand. In classical mechanics, Bertrand's theorem states that among central-force potentials with bound orbits, there are only two types of central-force (radial) scalar potentials with the property that all bound orbits are also closed orbits.
In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.
In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that
In the second edition, Goldstein corrected all the errors that had been pointed out, added a new chapter on perturbation theory, a new section on Bertrand's theorem, and another on Noether's theorem. Other arguments and proofs were simplified and supplemented. [3]
Daniel Larsen (born 2003) is an American mathematician known for proving [1] a 1994 conjecture of W. R. Alford, Andrew Granville and Carl Pomerance on the distribution of Carmichael numbers, commonly known as Bertrand's postulate for Carmichael numbers. [2]
Bertini's theorem (algebraic geometry) Bertrand–Diquet–Puiseux theorem (differential geometry) Bertrand's ballot theorem (probability theory, combinatorics) Bertrand's postulate (number theory) Besicovitch covering theorem (mathematical analysis) Betti's theorem ; Beurling–Lax theorem (Hardy spaces) Bézout's theorem (algebraic geometry)
They are the only two problems that have closed orbits for every possible set of initial conditions, i.e., return to their starting point with the same velocity (Bertrand's theorem). [1]: 92 The Kepler problem also conserves the Laplace–Runge–Lenz vector, which has since been generalized to include other interactions.
Clearly the theorem is true if p > 0 and q = 0 when the probability is 1, given that the first candidate receives all the votes; it is also true when p = q > 0 as we have just seen. Assume it is true both when p = a − 1 and q = b , and when p = a and q = b − 1, with a > b > 0.