When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse-square law - Wikipedia

    en.wikipedia.org/wiki/Inverse-square_law

    The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, light, sound, and radiation ...

  3. Radiant intensity - Wikipedia

    en.wikipedia.org/wiki/Radiant_intensity

    Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Newton would need an accurate measure of this constant to prove his inverse-square law. When Newton presented Book 1 of the unpublished text in April 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him, ultimately a frivolous accusation. [8]: 204

  5. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    In electromagnetic radiation (such as microwaves from an antenna, shown here) the term "radiation" applies only to the parts of the electromagnetic field that radiate into infinite space and decrease in intensity by an inverse-square law of power so that the total radiation energy that crosses through an imaginary spherical surface is the same ...

  6. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    This statement was later condensed into the following inverse-square law: F = G m 1 m 2 r 2 , {\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}},} where F is the force, m 1 and m 2 are the masses of the objects interacting, r is the distance between the centers of the masses and G is the gravitational constant 6.674 × 10 −11 m 3 ⋅kg −1 ⋅s ...

  7. Gravitational wave - Wikipedia

    en.wikipedia.org/wiki/Gravitational_wave

    The speed, wavelength, and frequency of a gravitational wave are related by the equation c = λf, just like the equation for a light wave. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600 000 km, or 47 times the diameter of the Earth.

  8. Scientific law - Wikipedia

    en.wikipedia.org/wiki/Scientific_law

    The inverse square law of interactions mediated by massless bosons is the mathematical consequence of the 3-dimensionality of space. One strategy in the search for the most fundamental laws of nature is to search for the most general mathematical symmetry group that can be applied to the fundamental interactions.

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    After these explanations were discounted, some physicists were driven to the more radical hypothesis that Newton's inverse-square law of gravitation was incorrect. For example, some physicists proposed a power law with an exponent that was slightly different from 2.