When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  3. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    This definition also applies unchanged to left modules and to vector spaces. [10] The definition of the transpose may be seen to be independent of any bilinear form on the modules, unlike the adjoint . The continuous dual space of a topological vector space (TVS) X is denoted by X '.

  4. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  5. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The vector space of ⁠ ⁠ matrices over ⁠ ⁠ is denoted by ⁠ ⁠. For ⁠ A ∈ K m × n {\displaystyle A\in \mathbb {K} ^{m\times n}} ⁠ , the transpose is denoted ⁠ A T {\displaystyle A^{\mathsf {T}}} ⁠ and the Hermitian transpose (also called conjugate transpose ) is denoted ⁠ A ∗ {\displaystyle A^{*}} ⁠ .

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    When m = 1, that is when f : R n → R is a scalar-valued function, the Jacobian matrix reduces to the row vector; this row vector of all first-order partial derivatives of f is the transpose of the gradient of f, i.e. =.

  7. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.

  8. Commutation matrix - Wikipedia

    en.wikipedia.org/wiki/Commutation_matrix

    Replacing A with A T in the definition of the commutation matrix shows that K (m,n) = (K (n,m)) T. Therefore, in the special case of m = n the commutation matrix is an involution and symmetric. The main use of the commutation matrix, and the source of its name, is to commute the Kronecker product: for every m × n matrix A and every r × q ...

  9. Transpositions matrix - Wikipedia

    en.wikipedia.org/wiki/Transpositions_matrix

    is the vector from which the elements of matrix are derived. Orderings R of Hadamard matrix’s rows were obtained experimentally for T r s {\displaystyle Trs} matrices of sizes 2, 4 and 8. It is important to note, that the ordering R of Hadamard matrix’s rows (against the Sylvester-Hadamard matrix) does not depend on the vector X ...