Search results
Results From The WOW.Com Content Network
Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
This little-known but serious issue can be overcome by using an accuracy measure based on the logarithm of the accuracy ratio (the ratio of the predicted to actual value), given by (). This approach leads to superior statistical properties and also leads to predictions which can be interpreted in terms of the geometric mean.
In bootstrap-resamples, the 'population' is in fact the sample, and this is known; hence the quality of inference of the 'true' sample from resampled data (resampled → sample) is measurable. More formally, the bootstrap works by treating inference of the true probability distribution J , given the original data, as being analogous to an ...
Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4. One of the languages implemented in Guile is Scheme. Haskell: the built-in Integer datatype implements arbitrary-precision arithmetic and the standard Data.Ratio module implements rational numbers.
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; [1]
A careful analysis of the errors in compensated summation is needed to appreciate its accuracy characteristics. While it is more accurate than naive summation, it can still give large relative errors for ill-conditioned sums. Suppose that one is summing values , for =, …,