Search results
Results From The WOW.Com Content Network
Descriptive statistics Nonparametric statistics Quality control Survival analysis Data processing Base stat. [Note 2] Normality tests [Note 3] CTA [Note 4] Nonparametric comparison, ANOVA: Cluster analysis Discriminant analysis BDP [Note 5] Ext. [Note 6]
WarpPLS – statistics package used in structural equation modeling; Wolfram Language [6] – the computer language that evolved from the program Mathematica. It has similar statistical capabilities as Mathematica. World Programming System (WPS) – statistical package that supports the use of Python, R and SAS languages within a single user ...
There are a few reviews of free statistical software. There were two reviews in journals (but not peer reviewed), one by Zhu and Kuljaca [26] and another article by Grant that included mainly a brief review of R. [27] Zhu and Kuljaca outlined some useful characteristics of software, such as ease of use, having a number of statistical procedures and ability to develop new procedures.
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.
Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). [4]
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...
Description: Extensive exposition of statistical decision theory, statistics, and decision analysis from a Bayesian standpoint. Many examples and problems come from business and economics. Importance: Greatly extended the scope of applied Bayesian statistics by using conjugate priors for exponential families. Extensive treatment of sequential ...
Students working in the Statistics Machine Room of the London School of Economics in 1964. Computational statistics, or statistical computing, is the study which is the intersection of statistics and computer science, and refers to the statistical methods that are enabled by using computational methods.