Search results
Results From The WOW.Com Content Network
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.
The distributions of a wide variety of physical, biological, and human-made phenomena approximately follow a power law over a wide range of magnitudes: these include the sizes of craters on the moon and of solar flares, [2] cloud sizes, [3] the foraging pattern of various species, [4] the sizes of activity patterns of neuronal populations, [5] the frequencies of words in most languages ...
When these assumptions are satisfied, the following covariance matrix K applies for the 1D profile parameters , , and under i.i.d. Gaussian noise and under Poisson noise: [9] = , = , where is the width of the pixels used to sample the function, is the quantum efficiency of the detector, and indicates the standard deviation of the measurement noise.
chemistry (Proportion of "active" molecules or atoms) Arrhenius number = Svante Arrhenius: chemistry (ratio of activation energy to thermal energy) [1] Atomic weight: M: chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd
In these examples, we will take the values given as the entire population of values. The data set [100, 100, 100] has a population standard deviation of 0 and a coefficient of variation of 0 / 100 = 0; The data set [90, 100, 110] has a population standard deviation of 8.16 and a coefficient of variation of 8.16 / 100 = 0.0816
Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). [4]
The geometric standard deviation is used as a measure of log-normal dispersion analogously to the geometric mean. [3] As the log-transform of a log-normal distribution results in a normal distribution, we see that the geometric standard deviation is the exponentiated value of the standard deviation of the log-transformed values, i.e. = ( ()).