Search results
Results From The WOW.Com Content Network
In mathematics, an axiom may be a "logical axiom" or a "non-logical axiom". Logical axioms are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., ( A and B ) implies A ), while non-logical axioms are substantive assertions about the elements of the domain of a specific mathematical theory, for ...
The new axiom is Lobachevsky's parallel postulate (also known as the characteristic postulate of hyperbolic geometry): [75] Through a point not on a given line there exists (in the plane determined by this point and line) at least two lines which do not meet the given line. With this addition, the axiom system is now complete.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
This method resembles the modern axiomatic method but with a big philosophical difference: axioms and postulates were supposed to be true, being either self-evident or resulting from experiments, while no other truth than the correctness of the proof is involved in the axiomatic method. So, for Aristotle, a proved theorem is true, while in the ...
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.
An axiomatic system is a set of axioms or assumptions from which other statements (theorems) are logically derived. [97] In propositional logic, axiomatic systems define a base set of propositions considered to be self-evidently true, and theorems are proved by applying deduction rules to these axioms. [98] See § Syntactic proof via axioms.
In mathematics, an algebraic structure or algebraic system [1] consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities (known as axioms) that these operations must satisfy.
This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .