Search results
Results From The WOW.Com Content Network
Suppose we have a continuous differential equation ′ = (,), =, and we wish to compute an approximation of the true solution () at discrete time steps ,, …,.For simplicity, assume the time steps are equally spaced:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Special pages; Help; Learn to edit; Community portal; Recent changes; Upload file
Composite Simpson's 3/8 rule is even less accurate. Integration by Simpson's 1/3 rule can be represented as a weighted average with 2/3 of the value coming from integration by the trapezoidal rule with step h and 1/3 of the value coming from integration by the rectangle rule with step 2h. The accuracy is governed by the second (2h step) term.
Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
For simplicity, the following example uses the simplest integration method, the Euler method; in practice, higher-order methods such as Runge–Kutta methods are preferred due to their superior convergence and stability properties.
Can someone add some examples please? At the moment I think this page is only comprehensible to mathematicians or people who already understand the concept.-- Manu 001 ( talk ) 21:10, 18 November 2017 (UTC) [ reply ]
Heun's Method addresses this problem by considering the interval spanned by the tangent line segment as a whole. Taking a concave-up example, the left tangent prediction line underestimates the slope of the curve for the entire width of the interval from the current point to the next predicted point.