When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    The boundary of an -manifold with boundary is an ()-manifold. A disk (circle plus interior) is a 2-manifold with boundary. Its boundary is a circle, a 1-manifold. A square with interior is also a 2-manifold with boundary. A ball (sphere plus interior) is a 3-manifold with boundary. Its boundary is a sphere, a 2-manifold.

  3. Exterior calculus identities - Wikipedia

    en.wikipedia.org/wiki/Exterior_calculus_identities

    The boundary of a manifold is a manifold , which has dimension . An orientation on M {\displaystyle M} induces an orientation on ∂ M {\displaystyle \partial M} . We usually denote a submanifold by Σ ⊂ M {\displaystyle \Sigma \subset M} .

  4. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    There is a unique connected 0-dimensional manifold, namely the point, and disconnected 0-dimensional manifolds are just discrete sets, classified by cardinality. They have no geometry, and their study is combinatorics. A connected compact 1-dimensional manifold without boundary is homeomorphic (or diffeomorphic if it is smooth) to the circle.

  5. Cobordism - Wikipedia

    en.wikipedia.org/wiki/Cobordism

    The boundary of an (+)-dimensional manifold is an -dimensional manifold that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the difference between all closed manifolds and those that are boundaries.

  6. Boundary (topology) - Wikipedia

    en.wikipedia.org/wiki/Boundary_(topology)

    A boundary point of a set is any element of that set's boundary. The boundary defined above is sometimes called the set's topological boundary to distinguish it from other similarly named notions such as the boundary of a manifold with boundary or the boundary of a manifold with corners, to name just a few examples.

  7. Boundary-incompressible surface - Wikipedia

    en.wikipedia.org/wiki/Boundary-incompressible...

    The surface S is said to be boundary-compressible if either S is a disk that cobounds a ball with a disk in or there exists a boundary-compressing disk for S in M. Otherwise, S is boundary-incompressible. Alternatively, one can relax this definition by dropping the requirement that the surface be properly embedded.

  8. Eta invariant - Wikipedia

    en.wikipedia.org/wiki/Eta_invariant

    Michael Francis Atiyah, H. Donnelly, and I. M. Singer defined the signature defect of the boundary of a manifold as the eta invariant, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at s=0 or 1 of a Shimizu L-function.

  9. Closed manifold - Wikipedia

    en.wikipedia.org/wiki/Closed_manifold

    However, this definition doesn’t cover some basic objects such as a closed disk, so authors sometimes define a manifold with boundary and abusively say manifold without reference to the boundary. But normally, a compact manifold (compact with respect to its underlying topology) can synonymously be used for closed manifold if the usual ...