Search results
Results From The WOW.Com Content Network
Dash Enterprise is Plotly’s paid product for building, testing, deploying, managing and scaling Dash applications organization-wide. [34] The product integrates with enterprise IT systems to enable organizations to build, deploy and scale low-code Dash applications. [35]
Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.
The free statistical package R (see R programming language) can make a wide variety of nice-looking graphics. It is especially effective to display statistical data. On Wikimedia Commons, the category Created with R contains many examples, often including the corresponding R source code. Other examples can be found in the R Graph Gallery.
MFEM is a free, lightweight, scalable C++ library for finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of discretizations, and emphasis on usability, generality, and high-performance computing efficiency.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Octave programs consist of a list of function calls or a script. The syntax is matrix-based and provides various functions for matrix operations. It supports various data structures and allows object-oriented programming. [26] Its syntax is very similar to MATLAB, and careful programming of a script will allow it to run on both Octave and ...
A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = 8 / 3 The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions.
The software developed by Deb can be downloaded, [7] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [8] which implements the NSGA-II procedure with ES. Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.