Search results
Results From The WOW.Com Content Network
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
The first of these theorems is the spherical analogue of a plane theorem, and the second theorem is its dual, that is, the result of interchanging great circles and their poles. [32] Kiper et al. [ 33 ] proved a converse of the theorem: If the summations of the opposite sides are equal in a spherical quadrilateral, then there exists an ...
For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...
Euler also generalized Ptolemy's theorem, which is an equality in a cyclic quadrilateral, into an inequality for a convex quadrilateral. It states that + where there is equality if and only if the quadrilateral is cyclic. [24]: p.128–129 This is often called Ptolemy's inequality.
Poncelet–Steiner theorem ; Ptolemy's theorem ; Pythagorean theorem ; Reuschle's theorem (Euclidean geometry) Routh's theorem (triangle geometry) Saccheri–Legendre theorem (absolute geometry) Six circles theorem ; Steiner–Lehmus theorem (triangle geometry) Symphonic theorem (triangle geometry) Tangent-secant theorem
In the 2nd century AD, Ptolemy compiled a more extensive table of chords in his book on astronomy, giving the value of the chord for angles ranging from 1 / 2 to 180 degrees by increments of 1 / 2 degree. Ptolemy used a circle of diameter 120, and gave chord lengths accurate to two sexagesimal (base sixty) digits after the ...
He used Ptolemy's theorem on quadrilaterals inscribed in a circle to derive formulas for the chord of a half-arc, the chord of the sum of two arcs, and the chord of a difference of two arcs. The theorem states that for a quadrilateral inscribed in a circle , the product of the lengths of the diagonals equals the sum of the products of the two ...
Lester's theorem states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter are concyclic. If lines are drawn through the Lemoine point parallel to the sides of a triangle, then the six points of intersection of the lines and the sides of the triangle are concyclic, in what is called the Lemoine circle .