Search results
Results From The WOW.Com Content Network
English: Animated visual proof of Ptolemy's theorem, based on W. Derrick, J. Herstein (2012) Proof Without Words: Ptolemy's Theorem, The College Mathematics Journal, v 43, n 5, p 386 Date 22 May 2022
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...
Euler also generalized Ptolemy's theorem, which is an equality in a cyclic quadrilateral, into an inequality for a convex quadrilateral. It states that + where there is equality if and only if the quadrilateral is cyclic. [24]: p.128–129 This is often called Ptolemy's inequality.
A theorem that was central to Ptolemy's calculation of chords was what is still known today as Ptolemy's theorem, that the sum of the products of the opposite sides of a cyclic quadrilateral is equal to the product of the diagonals. A special case of Ptolemy's theorem appeared as proposition 93 in Euclid's Data.
Ptolemy's theorem: Geometry: Ptolemy: Pythagorean theorem: Geometry: Pythagoras: Raman scattering: Physics: Sir Chandrasekhara Venkata Raman: Rado's theorem: Discrete mathematics: Richard Rado: Ramanujan–Nagell equation See also: List of things named after Srinivasa Ramanujan: Mathematics: Srinivasa Ramanujan and Trygve Nagell: Raoult's law ...
The Planisphaerium is a work by Ptolemy. The title can be translated as "celestial plane" or "star chart". In this work Ptolemy explored the mathematics of mapping figures inscribed in the celestial sphere onto a plane by what is now known as stereographic projection. This method of projection preserves the properties of circles.
Aristarchus's inequality (after the Greek astronomer and mathematician Aristarchus of Samos; c. 310 – c. 230 BCE) is a law of trigonometry which states that if α and β are acute angles (i.e. between 0 and a right angle) and β < α then