Search results
Results From The WOW.Com Content Network
On the molecular level, the interlocked molecules cannot be separated without the breaking of the covalent bonds that comprise the conjoined molecules; this is referred to as a mechanical bond. Examples of mechanically interlocked molecular architectures include catenanes, rotaxanes, molecular knots, and molecular Borromean rings.
Rotaxane synthesis can be carried out via a "capping," "clipping, "slipping" or "active template" mechanism. Synthesis via the capping method relies strongly upon a thermodynamically driven template effect; that is, the "thread" is held within the "macrocycle" by non-covalent interactions, for example rotaxinations with cyclodextrin macrocycles involve exploitation of the hydrophobic effect.
The interlocked rings rotate with respect to one another. This motion can often be evaluated by NMR spectroscopy, among other methods.When molecular recognition motifs exist in the finished catenane (usually those that were used to synthesize the catenane), the catenane can have one or more thermodynamically preferred positions of the rings with respect to each other (recognition sites).
A molecular topology is an area in chemistry that involves different mechanically-interlocked molecular architectures. Pages in category "Molecular topology" The following 14 pages are in this category, out of 14 total.
In chemistry, molecular Borromean rings are an example of a mechanically-interlocked molecular architecture in which three macrocycles are interlocked in such a way that breaking any macrocycle allows the others to dissociate. They are the smallest examples of Borromean rings.
Typical examples of building block collections for medicinal chemistry are libraries of fluorine-containing building blocks. [ 24 ] [ 25 ] Introduction of the fluorine into a molecule has been shown to be beneficial for its pharmacokinetic and pharmacodynamic properties, therefore, the fluorine-substituted building blocks in drug design ...
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.