Search results
Results From The WOW.Com Content Network
A bubble column reactor is a chemical reactor that belongs to the general class of multiphase reactors, which consists of three main categories: trickle bed reactor (fixed or packed bed), fluidized bed reactor, and bubble column reactor. [1] A bubble column reactor is a very simple device consisting of a vertical vessel filled with water with a ...
The Archimedes number is applied often in the engineering of packed beds, which are very common in the chemical processing industry. [3] A packed bed reactor, which is similar to the ideal plug flow reactor model, involves packing a tubular reactor with a solid catalyst, then passing incompressible or compressible fluids through the solid bed. [3]
The circulating catalyst process can be replaced by fluid-bed technology. Early experiments with cobalt catalyst particles suspended in oil have been performed by Fischer. The bubble column reactor with a powdered iron slurry catalyst and a CO-rich syngas was particularly developed to pilot plant scale by Kölbel at the Rheinpreuben Company in ...
Vertical bubble columns, a project at the Universidad EAFIT to utilize algae to reduce CO 2 emissions. A bubble column photo reactor consists of vertically arranged cylindrical columns made out of transparent material. The introduction of gas takes place at the bottom of the column and causes a turbulent stream to enable an optimum gas exchange.
A real plug flow reactor has a residence time distribution that is a narrow pulse around the mean residence time distribution. A typical plug flow reactor could be a tube packed with some solid material (frequently a catalyst). Typically these types of reactors are called packed bed reactors or PBR's.
A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid (gas or liquid) is passed through a solid granular material (usually a catalyst) at high enough speeds to suspend the solid and cause it to behave as though it were a fluid.
On the other hand, if a reactor is designed to operate with no voids at all, a large negative void coefficient may serve as a safety system. A loss of coolant in such a reactor decreases the thermal output, but of course heat that is generated is no longer removed, so the temperature could rise (if all other safety systems simultaneously failed).
The design of the absorption process was critical to the efficiency of the whole system. The nitrogen dioxide was absorbed into water in a series of packed column or plate column absorption towers each four stories tall to produce approximately 40–50% nitric acid. The first towers bubbled the nitrogen dioxide through water and non-reactive ...