Search results
Results From The WOW.Com Content Network
The definition of a stochastic process varies, [67] but a stochastic process is traditionally defined as a collection of random variables indexed by some set. [68] [69] The terms random process and stochastic process are considered synonyms and are used interchangeably, without the index set being precisely specified.
In mathematics, the theory of stochastic processes is an important contribution to probability theory, [29] and continues to be an active topic of research for both theory and applications. [30] [31] [32] The word stochastic is used to describe other terms and objects in mathematics.
Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is ...
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [2] but instead is a mathematical function in which
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
The mathematical definition of ergodicity aims to capture ordinary every-day ideas about randomness.This includes ideas about systems that move in such a way as to (eventually) fill up all of space, such as diffusion and Brownian motion, as well as common-sense notions of mixing, such as mixing paints, drinks, cooking ingredients, industrial process mixing, smoke in a smoke-filled room, the ...
In physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. [1] In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime.
Thus, in a statistical model specified via mathematical equations, some of the variables do not have specific values, but instead have probability distributions; i.e. some of the variables are stochastic. In the above example with children's heights, ε is a stochastic variable; without that stochastic variable, the model would be deterministic.