When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lambda lifting - Wikipedia

    en.wikipedia.org/wiki/Lambda_lifting

    Lambda lifting is a meta-process that restructures a computer program so that functions are defined independently of each other in a global scope. An individual "lift" transforms a local function into a global function. It is a two step process, consisting of; Eliminating free variables in the function by adding parameters.

  3. Anonymous function - Wikipedia

    en.wikipedia.org/wiki/Anonymous_function

    The anonymous function here is the multiplication of the two arguments. The result of a fold need not be one value. Instead, both map and filter can be created using fold. In map, the value that is accumulated is a new list, containing the results of applying a function to each element of the original list.

  4. Higher-order function - Wikipedia

    en.wikipedia.org/wiki/Higher-order_function

    returns a function or value as its result. All other functions are first-order functions. In mathematics higher-order functions are also termed operators or functionals. The differential operator in calculus is a common example, since it maps a function to its derivative, also a function.

  5. Closure (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Closure_(computer_programming)

    The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).

  6. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus cannot express this: all functions are anonymous in lambda calculus, so we can't refer by name to a value which is yet to be defined, inside the lambda term defining that same value. However, a lambda expression can receive itself as its own argument, for example in (λ x . x x ) E .

  7. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    The type of the fixed point is the return type of the function being fixed. This may be a real or a function or any other type. In the untyped lambda calculus, the function to apply the fixed-point combinator to may be expressed using an encoding, like Church encoding. In this case particular lambda terms (which define functions) are considered ...

  8. Currying - Wikipedia

    en.wikipedia.org/wiki/Currying

    In the prototypical example, one begins with a function : that takes two arguments, one from and one from , and produces objects in . The curried form of this function treats the first argument as a parameter, so as to create a family of functions f x : Y → Z . {\displaystyle f_{x}:Y\to Z.}

  9. Church encoding - Wikipedia

    en.wikipedia.org/wiki/Church_encoding

    For example, a list of three elements x, y and z can be encoded by a higher-order function that when applied to a combinator c and a value n returns c x (c y (c z n)). Equivalently, it is an application of the chain of functional compositions of partial applications, (c x ∘ c y ∘ c z) n.