When.com Web Search

  1. Ads

    related to: arithmetic sequences activities

Search results

  1. Results From The WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Recamán's sequence: 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. A005132: Look-and ...

  4. Generalized arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Generalized_arithmetic...

    For example, the sequence,,,,, … is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions – it is a set of vectors of integers, rather than a set of integers.

  5. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

  6. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Sequences dn + a with odd d are often ignored because half the numbers are even and the other half is the same numbers as a sequence with 2d, if we start with n = 0. For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic ...

  7. Arithmetic progression topologies - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression...

    The notion of an arithmetic progression makes sense in arbitrary -modules, but the construction of a topology on them relies on closure under intersection. Instead, the correct generalization builds a topology out of ideals of a Dedekind domain . [ 16 ]