When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The photon has no electric charge, [17] [18] is generally considered to have zero rest mass [19] and is a stable particle. The experimental upper limit on the photon mass [20] [21] is very small, on the order of 10 −50 kg; its lifetime would be more than 10 18 years. [22] For comparison the age of the universe is about 1.38 × 10 10 years.

  3. Photonic molecule - Wikipedia

    en.wikipedia.org/wiki/Photonic_molecule

    Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". [4] In an alternative definition (which is not equivalent), photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels , and have been termed ...

  4. Photon structure function - Wikipedia

    en.wikipedia.org/wiki/Photon_structure_function

    Photons with high photon energy can transform in quantum mechanics to lepton and quark pairs, the latter fragmented subsequently to jets of hadrons, i.e. protons, pions, etc.At high energies E the lifetime t of such quantum fluctuations of mass M becomes nearly macroscopic: t ≈ E/M 2; this amounts to flight lengths as large as one micrometer for electron pairs in a 100 GeV photon beam, while ...

  5. Pair production - Wikipedia

    en.wikipedia.org/wiki/Pair_production

    The photon's energy is converted to particle mass in accordance with Einstein's equation, E = mc 2; where E is energy, m is mass and c is the speed of light. The photon must have higher energy than the sum of the rest mass energies of an electron and positron (2 × 511 keV = 1.022 MeV, resulting in a photon wavelength of 1.2132 pm ) for the ...

  6. Compton scattering - Wikipedia

    en.wikipedia.org/wiki/Compton_scattering

    The photon's momentum is then simply this effective mass times the photon's frame-invariant velocity c. For a photon, its momentum = /, and thus hf can be substituted for pc for all photon momentum terms which arise in course of the derivation below. The derivation which appears in Compton's paper is more terse, but follows the same logic in ...

  7. Annihilation - Wikipedia

    en.wikipedia.org/wiki/Annihilation

    When a low-energy electron annihilates a low-energy positron (antielectron), the most probable result is the creation of two or more photons, since the only other final-state Standard Model particles that electrons and positrons carry enough mass–energy to produce are neutrinos, which are approximately 10,000 times less likely to produce, and ...

  8. Standard Model - Wikipedia

    en.wikipedia.org/wiki/Standard_Model

    q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle labels separated by '/', one particle label is chosen.

  9. Massless particle - Wikipedia

    en.wikipedia.org/wiki/Massless_particle

    The photon (carrier of electromagnetism) is one of two known gauge bosons that are both believed to be massless; the other is the gluon (carrier of the strong force). The only other confirmed gauge bosons are the W and Z bosons , which are known from experiment to be extremely massive.