When.com Web Search

  1. Ad

    related to: multiples calculator between 3 and 10 numbers generator worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.

  3. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    [7] [8] [9] It is widely believed, [10] but not proven, that no odd perfect numbers exist; numerous restrictive conditions have been proven, [10] including a lower bound of 10 1500. [11] The following is a list of all 52 currently known (as of January 2025) Mersenne primes and corresponding perfect numbers, along with their exponents p.

  4. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The next number not yet crossed out in the list after 5 is 7; the next step would be to cross out every 7th number in the list after 7, but they are all already crossed out at this point, as these numbers (14, 21, 28) are also multiples of smaller primes because 7 × 7 is greater than 30.

  5. Multiply-with-carry pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Multiply-with-carry...

    This is the same as a generator with multiplier b, but producing output in reverse order, which does not affect the quality of the resultant pseudorandom numbers. Couture and L'Ecuyer [3] have proved the surprising result that the lattice associated with a multiply-with-carry generator is very close to the lattice associated with the Lehmer ...

  6. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The generator computes an odd 128-bit value and returns its upper 64 bits. This generator passes BigCrush from TestU01, but fails the TMFn test from PractRand. That test has been designed to catch exactly the defect of this type of generator: since the modulus is a power of 2, the period of the lowest bit in the output is only 2 62, rather than ...

  7. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);

  8. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  9. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    Consider the following: If a 3-digit number is squared, it can yield a 6-digit number (e.g. 540 2 = 291600). If there were to be middle 3 digits, that would leave 6 − 3 = 3 digits to be distributed to the left and right of the middle.