When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    This case always occurs as a degenerate conic in a pencil of circles. However, in other contexts it is not considered as a degenerate conic, as its equation is not of degree 2. The case of coincident lines occurs if and only if the rank of the 3×3 matrix is 1; in all other degenerate cases its rank is 2. [3]: p.108

  3. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    Often, the degenerate cases are the exceptional cases where changes to the usual dimension or the cardinality of the object (or of some part of it) occur. For example, a triangle is an object of dimension two, and a degenerate triangle is contained in a line , [ 3 ] which makes its dimension one.

  4. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration, which implies that they satisfy a linear relation that need not always hold. A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).

  5. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve).There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Pascal's theorem concerns the collinearity of three points that are constructed from a set of six points on any non-degenerate conic. The theorem also holds for degenerate conics consisting of two lines, but in that case it is known as Pappus's theorem. Non-degenerate conic sections are always "smooth".

  7. Linear system of conics - Wikipedia

    en.wikipedia.org/wiki/Linear_system_of_conics

    According to Bézout's theorem C and C′ will intersect in four points (if counted correctly). Assuming these are in general position , i.e. four distinct intersections, we get another interpretation of the linear system as the conics passing through the four given points (note that the codimension four here matches the dimension, one, in the ...

  8. Cayley–Bacharach theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Bacharach_theorem

    A special case is Pascal's theorem, in which case the two cubics in question are all degenerate: given six points on a conic (a hexagon), consider the lines obtained by extending opposite sides – this yields two cubics of three lines each, which intersect in 9 points – the 6 points on the conic, and 3 others. These 3 additional points lie ...

  9. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    For example, a line (of degree 1) is determined by 2 distinct points on it: one and only one line goes through those two points. Likewise, a non-degenerate conic (polynomial equation in x and y with the sum of their powers in any term not exceeding 2, hence with degree 2) is uniquely determined by 5 points in general position (no three of which ...