When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    Beal's conjecture concerns the question of whether the sum of two coprime integers, each a power greater than 2 of an integer, with the powers not necessarily equal, can equal another integer that is a power greater than 2. The Jacobi–Madden equation is + + + = (+ + +) in integers.

  3. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  4. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.

  5. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Since the Diophantus identity implies that the product of two integers each of which can be written as the sum of two squares is itself expressible as the sum of two squares, by applying Fermat's theorem to the prime factorization of any positive integer n, we see that if all the prime factors of n congruent to 3 modulo 4 occur to an even ...

  6. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn. This equation appears in various contexts in elementary geometry.

  7. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    In particular, the set of even integers that are not the sum of two primes has density zero. In 1951, Yuri Linnik proved the existence of a constant K such that every sufficiently large even number is the sum of two primes and at most K powers of 2. János Pintz and Imre Ruzsa found in 2020 that K = 8 works. [21]

  8. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    Pythagorean triples are sets of three integers such that the sum of the squares of the first two equals the square of the third. A Pythagorean prime is a prime that is the sum of two squares; Fermat's theorem on sums of two squares states which primes are Pythagorean primes.

  9. Polite number - Wikipedia

    en.wikipedia.org/wiki/Polite_number

    In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. [1] [2] The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.