Search results
Results From The WOW.Com Content Network
A hyperintensity or T2 hyperintensity is an area of high intensity on types of magnetic resonance imaging (MRI) scans of the brain of a human or of another mammal that reflect lesions produced largely by demyelination and axonal loss.
White matter hyperintensities can be caused by a variety of factors, including ischemia, micro-hemorrhages, gliosis, damage to small blood vessel walls, breaches of the barrier between the cerebrospinal fluid and the brain, or loss and deformation of the myelin sheath.
The diagnosis is typically made with magnetic resonance imaging of the brain. The findings most characteristic for PRES are symmetrical hyperintensities on T 2-weighed imaging in the parietal and occipital lobes; this pattern is present in more than half of all cases. [1] [3] FLAIR sequences can be better at showing these abnormalities. [4]
Evidence from subcortical small infarcts suggests that motor fibers are somatotopically arranged in the human corona radiata. Following subtotal brain damage, localization of the corticofugal projection in the corona radiata and internal capsule can assist in evaluating a patient's residual motor capacity and predicting their potential for functional restitution.
Central pontine myelinolysis; Other names: Osmotic demyelination syndrome, central pontine demyelination: Axial fat-saturated T2-weighted image showing hyperintensity in the pons with sparing of the peripheral fibers, the patient was an alcoholic admitted with a serum Na of 101 treated with hypertonic saline, he was left with quadriparesis, dysarthria, and altered mental status
For example, it can be used in brain imaging to suppress cerebrospinal fluid (CSF) effects on the image, so as to bring out the periventricular hyperintense lesions, such as multiple sclerosis (MS) plaques. [1] It was invented by Graeme Bydder, Joseph Hajnal, and Ian Young in the early 1990s. [2]
Pistachios. Protein per ounce: 5.73 grams Pull apart the shells and you’ll find little green nuts perfect for coating fish, sprinkling onto salads, or simply tossing with salt or spices.“In ...
Micrograph showing gliosis in the cerebellum. Reactive astrocytes on the left display severe proliferation and domain overlap. Reactive astrogliosis is the most common form of gliosis and involves the proliferation of astrocytes, a type of glial cell responsible for maintaining extracellular ion and neurotransmitter concentrations, modulating synapse function, and forming the blood–brain ...