Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
For example, the graph of y = x 2 − 4x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis. This is because the equation can also be written as y − 3 = (x − 2) 2. For many trigonometric functions, the parent function is usually a basic sin(x), cos(x), or tan(x).
If b = 0, the line is a vertical line (that is a line parallel to the y-axis) of equation =, which is not the graph of a function of x. Similarly, if a ≠ 0, the line is the graph of a function of y, and, if a = 0, one has a horizontal line of equation =.
In mathematics, the term linear function refers to two distinct but related notions: [1]. In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2]
A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.
Plot of normalized function (i.e. ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] = = (), using ordinary frequency f, where is the normalized form [10] of the sinc function and = (/) / = (/), using angular frequency , where is the unnormalized form of the sinc function.
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates.
A line, usually vertical, represents an interval of the domain of the derivative.The critical points (i.e., roots of the derivative , points such that () =) are indicated, and the intervals between the critical points have their signs indicated with arrows: an interval over which the derivative is positive has an arrow pointing in the positive direction along the line (up or right), and an ...