When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    A zero morphism in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if 0 XY : X → Y is the zero morphism among morphisms from X to Y , and f : A → X and g : Y → B are arbitrary morphisms, then g ∘ 0 XY = 0 XB and 0 XY ∘ f = 0 AY .

  3. Absorbing element - Wikipedia

    en.wikipedia.org/wiki/Absorbing_element

    Zero is thus an absorbing element. The zero of any ring is also an absorbing element. For an element r of a ring R, r0 = r(0 + 0) = r0 + r0, so 0 = r0, as zero is the unique element a for which r − r = a for any r in the ring R. This property holds true also in a rng since multiplicative identity isn't required.

  4. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    For any element x in a ring R, one has x0 = 0 = 0x (zero is an absorbing element with respect to multiplication) and (–1)x = –x. If 0 = 1 in a ring R (or more generally, 0 is a unit element), then R has only one element, and is called the zero ring. If a ring R contains the zero ring as a subring, then R itself is the zero ring. [6]

  5. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]

  6. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    the group under multiplication of the invertible elements of a field, [1] ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, the algebraic torus GL(1).

  7. Glossary of ring theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_ring_theory

    unit or invertible element : An element r of the ring R is a unit if there exists an element r −1 such that rr −1 = r −1 r = 1. This element r −1 is uniquely determined by r and is called the multiplicative inverse of r. The set of units forms a group under multiplication. unity The term "unity" is another name for the multiplicative ...

  8. 0 - Wikipedia

    en.wikipedia.org/wiki/0

    The role of 0 as additive identity generalizes beyond elementary algebra. In abstract algebra, 0 is commonly used to denote a zero element, which is the identity element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined). (Such elements may also be called zero elements.)

  9. Semifield - Wikipedia

    en.wikipedia.org/wiki/Semifield

    A variation of this definition arises if S contains an absorbing zero that is different from the multiplicative unit e, it is required that the non-zero elements be invertible, and a·0 = 0·a = 0. Since multiplication is associative, the (non-zero) elements of a semifield form a group.