Search results
Results From The WOW.Com Content Network
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
A36 steel has a Poisson's ratio of 0.26 and a shear modulus of 11,500 ksi (79.3 GPa). [7] A36 steel in plates, bars, and shapes with a thickness of less than 8 inches (203 millimeters) has a minimum yield strength of 36 ksi (250 MPa) and ultimate tensile strength of 58–80 ksi (400–550 MPa).
[1]: 58 For example, low-carbon steel generally exhibits a very linear stress–strain relationship up to a well-defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...
The bulk modulus is an extension of Young's modulus to three dimensions. Flexural modulus ( E flex ) describes the object's tendency to flex when acted upon by a moment . Two other elastic moduli are Lamé's first parameter , λ, and P-wave modulus , M , as used in table of modulus comparisons given below references.
Other moduli describe the material's response to other kinds of stress: the shear modulus describes the response to shear stress, and Young's modulus describes the response to normal (lengthwise stretching) stress. For a fluid, only the bulk modulus is meaningful.
Mild steel has a relatively low tensile strength, but it is cheap and easy to form. Surface hardness can be increased with carburization. [3] The density of mild steel is approximately 7.85 g/cm 3 (7,850 kg/m 3; 0.284 lb/cu in) [4] and the Young's modulus is 200 GPa (29 × 10 ^ 6 psi). [5]
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...