When.com Web Search

  1. Ads

    related to: p vs hat statistics calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    Greek letters (e.g. θ, β) are commonly used to denote unknown parameters (population parameters). [3]A tilde (~) denotes "has the probability distribution of". Placing a hat, or caret (also known as a circumflex), over a true parameter denotes an estimator of it, e.g., ^ is an estimator for .

  3. Projection matrix - Wikipedia

    en.wikipedia.org/wiki/Projection_matrix

    A matrix, has its column space depicted as the green line. The projection of some vector onto the column space of is the vector . From the figure, it is clear that the closest point from the vector onto the column space of , is , and is one where we can draw a line orthogonal to the column space of .

  4. Hat notation - Wikipedia

    en.wikipedia.org/wiki/Hat_notation

    In statistics, a circumflex (ˆ), called a "hat", is used to denote an estimator or an estimated value. [1] For example, in the context of errors and residuals , the "hat" over the letter ε ^ {\displaystyle {\hat {\varepsilon }}} indicates an observable estimate (the residuals) of an unobservable quantity called ε {\displaystyle \varepsilon ...

  5. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    After analyzing the data, if the p-value is less than α, that is taken to mean that the observed data is sufficiently inconsistent with the null hypothesis for the null hypothesis to be rejected. However, that does not prove that the null hypothesis is false. The p-value does not, in itself, establish probabilities of hypotheses. Rather, it is ...

  6. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    If the smoothing or fitting procedure has projection matrix (i.e., hat matrix) L, which maps the observed values vector to predicted values vector ^ =, then PE and MSPE are formulated as: P E i = g ( x i ) − g ^ ( x i ) , {\displaystyle \operatorname {PE_{i}} =g(x_{i})-{\widehat {g}}(x_{i}),}

  7. Template:List of statistics symbols - Wikipedia

    en.wikipedia.org/wiki/Template:List_of...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  8. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    We can calculate the upper and lower confidence limits of the intervals from the observed data. Suppose a dataset x 1, . . . , x n is given, modeled as realization of random variables X 1, . . . , X n. Let θ be the parameter of interest, and γ a number between 0 and 1. If there exist sample statistics L n = g(X 1, . . . , X n) and U n = h(X 1

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    In frequentist statistics, the likelihood function is itself a statistic that summarizes a single sample from a population, whose calculated value depends on a choice of several parameters θ 1... θ p, where p is the count of parameters in some already-selected statistical model. The value of the likelihood serves as a figure of merit for the ...