When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each sample is only considered out-of-bag for the trees that do not include it in their bootstrap sample.

  4. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    While the techniques described above utilize random forests and bagging (otherwise known as bootstrapping), there are certain techniques that can be used in order to improve their execution and voting time, their prediction accuracy, and their overall performance. The following are key steps in creating an efficient random forest:

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Fast algorithms such as decision trees are commonly used in ensemble methods (e.g., random forests), although slower algorithms can benefit from ensemble techniques as well. By analogy, ensemble techniques have been used also in unsupervised learning scenarios, for example in consensus clustering or in anomaly detection.

  7. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    In some classification problems, when random forest is used to fit models, jackknife estimated variance is defined as: ... while predictions made by m=5 random forest ...

  8. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. [1] [2] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. [1]

  9. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers , [ 6 ] support vector machines , [ 7 ] nearest neighbours [ 8 ] [ 9 ] and other types of classifiers.