Ads
related to: polynomial time reduction example math problems
Search results
Results From The WOW.Com Content Network
A polynomial-time Turing reduction from a problem A to a problem B is an algorithm that solves problem A using a polynomial number of calls to a subroutine for problem B, and polynomial time outside of those subroutine calls. Polynomial-time Turing reductions are also known as Cook reductions, named after Stephen Cook.
It runs in polynomial time on inputs that are in SUBSET-SUM if and only if P = NP: // Algorithm that accepts the NP-complete language SUBSET-SUM. // // this is a polynomial-time algorithm if and only if P = NP. // // "Polynomial-time" means it returns "yes" in polynomial time when // the answer should be "yes", and runs forever when it is "no".
In this diagram, problems are reduced from bottom to top. Note that this diagram is misleading as a description of the mathematical relationship between these problems, as there exists a polynomial-time reduction between any two NP-complete problems; but it indicates where demonstrating this polynomial-time reduction has been easiest.
Solvable in polynomial time for 2-sets (this is a matching). [2] [3]: SP2 Finding the global minimum solution of a Hartree-Fock problem [37] Upward planarity testing [8] Hospitals-and-residents problem with couples; Knot genus [38] Latin square completion (the problem of determining if a partially filled square can be completed)
A decision problem H is NP-hard when for every problem L in NP, there is a polynomial-time many-one reduction from L to H. [1]: 80 Another definition is to require that there be a polynomial-time reduction from an NP-complete problem G to H.
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
For example, it's quite possible to reduce a difficult-to-solve NP-complete problem like the boolean satisfiability problem to a trivial problem, like determining if a number equals zero, by having the reduction machine solve the problem in exponential time and output zero only if there is a solution. However, this does not achieve much ...