When.com Web Search

  1. Ads

    related to: polynomial time reduction example math problems

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial-time reduction - Wikipedia

    en.wikipedia.org/wiki/Polynomial-time_reduction

    A polynomial-time Turing reduction from a problem A to a problem B is an algorithm that solves problem A using a polynomial number of calls to a subroutine for problem B, and polynomial time outside of those subroutine calls. Polynomial-time Turing reductions are also known as Cook reductions, named after Stephen Cook.

  3. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    It runs in polynomial time on inputs that are in SUBSET-SUM if and only if P = NP: // Algorithm that accepts the NP-complete language SUBSET-SUM. // // this is a polynomial-time algorithm if and only if P = NP. // // "Polynomial-time" means it returns "yes" in polynomial time when // the answer should be "yes", and runs forever when it is "no".

  4. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    In this diagram, problems are reduced from bottom to top. Note that this diagram is misleading as a description of the mathematical relationship between these problems, as there exists a polynomial-time reduction between any two NP-complete problems; but it indicates where demonstrating this polynomial-time reduction has been easiest.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Solvable in polynomial time for 2-sets (this is a matching). [2] [3]: SP2 Finding the global minimum solution of a Hartree-Fock problem [37] Upward planarity testing [8] Hospitals-and-residents problem with couples; Knot genus [38] Latin square completion (the problem of determining if a partially filled square can be completed)

  6. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    A decision problem H is NP-hard when for every problem L in NP, there is a polynomial-time many-one reduction from L to H. [1]: 80 Another definition is to require that there be a polynomial-time reduction from an NP-complete problem G to H.

  7. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  8. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...

  9. Reduction (complexity) - Wikipedia

    en.wikipedia.org/wiki/Reduction_(complexity)

    For example, it's quite possible to reduce a difficult-to-solve NP-complete problem like the boolean satisfiability problem to a trivial problem, like determining if a number equals zero, by having the reduction machine solve the problem in exponential time and output zero only if there is a solution. However, this does not achieve much ...