Search results
Results From The WOW.Com Content Network
A polynomial-time many-one reduction from a problem A to a problem B (both of which are usually required to be decision problems) is a polynomial-time algorithm for transforming inputs to problem A into inputs to problem B, such that the transformed problem has the same output as the original problem.
A polynomial-time counting reduction is usually used to transform instances of a known-hard problem into instances of another problem that is to be proven hard. It consists of two functions f {\displaystyle f} and g {\displaystyle g} , both of which must be computable in polynomial time .
In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization ...
An approximation-preserving reduction is a pair of functions (,) (which often must be computable in polynomial time), such that: f maps an instance x of A to an instance ′ of B. g maps a solution ′ of B to a solution y of A.
If one rounds off some of the least significant digits of the profit values then they will be bounded by a polynomial and 1/ε where ε is a bound on the correctness of the solution. This restriction then means that an algorithm can find a solution in polynomial time that is correct within a factor of (1-ε) of the optimal solution. [26]
As described in the example above, there are two main types of reductions used in computational complexity, the many-one reduction and the Turing reduction.Many-one reductions map instances of one problem to instances of another; Turing reductions compute the solution to one problem, assuming the other problem is easy to solve.
In this case, the proof shows that a solution of Sudoku in polynomial time could also be used to complete Latin squares in polynomial time. [12] This in turn gives a solution to the problem of partitioning tri-partite graphs into triangles, [ 13 ] which could then be used to find solutions for the special case of SAT known as 3-SAT, [ 14 ...
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...