Search results
Results From The WOW.Com Content Network
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
The reverse of a string is a string with the same symbols but in reverse order. For example, if s = abc (where a, b, and c are symbols of the alphabet), then the reverse of s is cba. A string that is the reverse of itself (e.g., s = madam) is called a palindrome, which also includes the empty string and all strings of length 1.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
More formally, for any language L and string x over an alphabet Σ, the language edit distance d(L, x) is given by [14] (,) = (,), where (,) is the string edit distance. When the language L is context free , there is a cubic time dynamic programming algorithm proposed by Aho and Peterson in 1972 which computes the language edit distance. [ 15 ]
A suffix tree for a string of length can be built in () time, if the letters come from an alphabet of integers in a polynomial range (in particular, this is true for constant-sized alphabets). [9] For larger alphabets, the running time is dominated by first sorting the letters to bring them into a range of size O ( n ) {\displaystyle O(n)} ; in ...
In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation.It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [1]
It is a simplification of the Boyer–Moore string-search algorithm which is related to the Knuth–Morris–Pratt algorithm. The algorithm trades space for time in order to obtain an average-case complexity of O(n) on random text, although it has O(nm) in the worst case, where the length of the pattern is m and the length of the search string ...