When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat point - Wikipedia

    en.wikipedia.org/wiki/Fermat_point

    Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...

  3. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    A triangle can be uniquely determined in this sense when given any of the following: [1] [2] Three sides (SSS) Two sides and the included angle (SAS, side-angle-side) Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA)

  4. 5-Con triangles - Wikipedia

    en.wikipedia.org/wiki/5-Con_triangles

    Any 5-Con capable triangle has different side lengths and the middle one is the geometric mean of the other two. The ratio between the largest and the middle side length is then equal to that between the middle and the smallest side length. We can use both this ratio and its inverse for scaling and obtaining an almost congruent triangle.

  5. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  6. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A Heronian triangle is commonly defined as one with integer sides whose area is also an integer. The lengths of the sides of such a triangle form a Heronian triple (a, b, c) for a ≤ b ≤ c. Every Pythagorean triple is a Heronian triple, because at least one of the legs a, b must be even in a Pythagorean triple, so the area ab/2 is an integer.

  7. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A similar proof uses four copies of a right triangle with sides a, b and c, arranged inside a square with side c as in the top half of the diagram. [6] The triangles are similar with area , while the small square has side b − a and area (b − a) 2. The area of the large square is therefore

  8. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines): [a] = ⁡ ⁡. These formulas produce high round-off errors in floating point calculations if the triangle is very acute, i.e., if c is small relative to a and b or γ is small compared to 1.

  9. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangle inequality states that the sum of the lengths of any two sides of a triangle must be greater than or equal to the length of the third side. [48] Conversely, some triangle with three given positive side lengths exists if and only if those side lengths satisfy the triangle inequality. [49]