Search results
Results From The WOW.Com Content Network
Bioremediation broadly refers to any process wherein a biological system (typically bacteria, microalgae, fungi in mycoremediation, and plants in phytoremediation), living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. [1]
Microbial biodegradation is the use of bioremediation and biotransformation methods to harness the naturally occurring ability of microbial xenobiotic metabolism to degrade, transform or accumulate environmental pollutants, including hydrocarbons (e.g. oil), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), heterocyclic compounds (such as pyridine or quinoline ...
Bioremediation of radioactive waste or bioremediation of radionuclides is an application of bioremediation based on the use of biological agents bacteria, plants and fungi (natural or genetically modified) to catalyze chemical reactions that allow the decontamination of sites affected by radionuclides. [1]
Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. [a] [2] It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradation occurs under a specific set of circumstances.
Bioremediation is used to neutralize pollutants including Hydrocarbons, chlorinated compounds, nitrates, toxic metals and other pollutants through a variety of chemical mechanisms. [1] Microorganism used in the process of bioremediation can either be implanted or cultivated within the site through the application of fertilizers and other nutrients.
The gut microbiome plays a huge role in human health, and having a healthy bacterial community is essential to living a healthy life—bacteria aid in digesting nutrients that a human's gastrointestinal tract cannot process independently. Putrefying bacteria in the gut play a key role in fermenting or decomposing proteins that are not broken ...
Other uses for genetically modified bacteria include bioremediation, where the bacteria are used to convert pollutants into a less toxic form. Genetic engineering can increase the levels of the enzymes used to degrade a toxin or to make the bacteria more stable under environmental conditions. [ 29 ]
Various types of bacteria, archaea, algae, fungi, and some species of plants are all able to break down specific toxic waste products into safer constituents. Bioremediation is classified by the organism responsible for remediation with three major subdivisions: microbial remediation, phytoremediation, and mycoremediation. [18]