Search results
Results From The WOW.Com Content Network
The logarithm is denoted "log b x" (pronounced as "the logarithm of x to base b", "the base-b logarithm of x", or most commonly "the log, base b, of x "). An equivalent and more succinct definition is that the function log b is the inverse function to the function .
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series
for the definition of the principal values of the inverse hyperbolic tangent and cotangent. In these formulas, the argument of the logarithm is real if and only if z is real. For artanh, this argument is in the real interval (−∞, 0], if z belongs either to (−∞, −1] or to [1, ∞).
However, this might appear to conflict logically with the common semantics for expressions such as sin 2 (x) (although only sin 2 x, without parentheses, is the really common use), which refer to numeric power rather than function composition, and therefore may result in confusion between notation for the reciprocal (multiplicative inverse) and ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.
For logarithmic barrier functions, (,) is defined as when < and otherwise (in one dimension; see below for a definition in higher dimensions). This essentially relies on the fact that log t {\displaystyle \log t} tends to negative infinity as t {\displaystyle t} tends to 0.